Metamath Proof Explorer


Theorem ee122

Description: e122 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee122.1 φ ψ
ee122.2 φ χ θ
ee122.3 φ χ τ
ee122.4 ψ θ τ η
Assertion ee122 φ χ η

Proof

Step Hyp Ref Expression
1 ee122.1 φ ψ
2 ee122.2 φ χ θ
3 ee122.3 φ χ τ
4 ee122.4 ψ θ τ η
5 1 a1d φ χ ψ
6 5 2 3 4 ee222 φ χ η