Metamath Proof Explorer


Theorem ee123

Description: e123 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee123.1 φ ψ
ee123.2 φ χ θ
ee123.3 φ χ τ η
ee123.4 ψ θ η ζ
Assertion ee123 φ χ τ ζ

Proof

Step Hyp Ref Expression
1 ee123.1 φ ψ
2 ee123.2 φ χ θ
3 ee123.3 φ χ τ η
4 ee123.4 ψ θ η ζ
5 1 a1d φ τ ψ
6 5 a1d φ χ τ ψ
7 2 a1dd φ χ τ θ
8 6 7 3 4 ee333 φ χ τ ζ