Metamath Proof Explorer


Theorem ee202

Description: e202 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee202.1 φ ψ χ
ee202.2 θ
ee202.3 φ ψ τ
ee202.4 χ θ τ η
Assertion ee202 φ ψ η

Proof

Step Hyp Ref Expression
1 ee202.1 φ ψ χ
2 ee202.2 θ
3 ee202.3 φ ψ τ
4 ee202.4 χ θ τ η
5 2 a1i ψ θ
6 5 a1i φ ψ θ
7 1 6 3 4 ee222 φ ψ η