Metamath Proof Explorer


Theorem ee20an

Description: e20an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee20an.1 φ ψ χ
ee20an.2 θ
ee20an.3 χ θ τ
Assertion ee20an φ ψ τ

Proof

Step Hyp Ref Expression
1 ee20an.1 φ ψ χ
2 ee20an.2 θ
3 ee20an.3 χ θ τ
4 3 ex χ θ τ
5 1 2 4 syl6mpi φ ψ τ