Metamath Proof Explorer


Theorem ee210

Description: e210 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee210.1 φ ψ χ
ee210.2 φ θ
ee210.3 τ
ee210.4 χ θ τ η
Assertion ee210 φ ψ η

Proof

Step Hyp Ref Expression
1 ee210.1 φ ψ χ
2 ee210.2 φ θ
3 ee210.3 τ
4 ee210.4 χ θ τ η
5 2 a1d φ ψ θ
6 3 a1i ψ τ
7 6 a1i φ ψ τ
8 1 5 7 4 ee222 φ ψ η