Metamath Proof Explorer


Theorem ee212

Description: e212 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee212.1 φ ψ χ
ee212.2 φ θ
ee212.3 φ ψ τ
ee212.4 χ θ τ η
Assertion ee212 φ ψ η

Proof

Step Hyp Ref Expression
1 ee212.1 φ ψ χ
2 ee212.2 φ θ
3 ee212.3 φ ψ τ
4 ee212.4 χ θ τ η
5 2 a1d φ ψ θ
6 1 5 3 4 ee222 φ ψ η