Metamath Proof Explorer


Theorem ee21an

Description: e21an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee21an.1 φ ψ χ
ee21an.2 φ θ
ee21an.3 χ θ τ
Assertion ee21an φ ψ τ

Proof

Step Hyp Ref Expression
1 ee21an.1 φ ψ χ
2 ee21an.2 φ θ
3 ee21an.3 χ θ τ
4 3 ex χ θ τ
5 1 2 4 syl6ci φ ψ τ