Metamath Proof Explorer


Theorem ee220

Description: e220 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee220.1 φ ψ χ
ee220.2 φ ψ θ
ee220.3 τ
ee220.4 χ θ τ η
Assertion ee220 φ ψ η

Proof

Step Hyp Ref Expression
1 ee220.1 φ ψ χ
2 ee220.2 φ ψ θ
3 ee220.3 τ
4 ee220.4 χ θ τ η
5 3 2a1i φ ψ τ
6 1 2 5 4 ee222 φ ψ η