Metamath Proof Explorer


Theorem ee221

Description: e221 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee221.1 φ ψ χ
ee221.2 φ ψ θ
ee221.3 φ τ
ee221.4 χ θ τ η
Assertion ee221 φ ψ η

Proof

Step Hyp Ref Expression
1 ee221.1 φ ψ χ
2 ee221.2 φ ψ θ
3 ee221.3 φ τ
4 ee221.4 χ θ τ η
5 3 a1d φ ψ τ
6 1 2 5 4 ee222 φ ψ η