Metamath Proof Explorer


Theorem ee223

Description: e223 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee223.1 φ ψ χ
ee223.2 φ ψ θ
ee223.3 φ ψ τ η
ee223.4 χ θ η ζ
Assertion ee223 φ ψ τ ζ

Proof

Step Hyp Ref Expression
1 ee223.1 φ ψ χ
2 ee223.2 φ ψ θ
3 ee223.3 φ ψ τ η
4 ee223.4 χ θ η ζ
5 1 4 syl6 φ ψ θ η ζ
6 5 com34 φ ψ η θ ζ
7 6 com23 φ η ψ θ ζ
8 7 com12 η φ ψ θ ζ
9 3 8 syl8 φ ψ τ φ ψ θ ζ
10 9 com34 φ ψ φ τ ψ θ ζ
11 10 pm2.43a φ ψ τ ψ θ ζ
12 11 com34 φ ψ ψ τ θ ζ
13 12 pm2.43d φ ψ τ θ ζ
14 13 com34 φ ψ θ τ ζ
15 2 14 mpdd φ ψ τ ζ