Metamath Proof Explorer


Theorem ee22an

Description: e22an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee22an.1 φ ψ χ
ee22an.2 φ ψ θ
ee22an.3 χ θ τ
Assertion ee22an φ ψ τ

Proof

Step Hyp Ref Expression
1 ee22an.1 φ ψ χ
2 ee22an.2 φ ψ θ
3 ee22an.3 χ θ τ
4 3 ex χ θ τ
5 1 2 4 syl6c φ ψ τ