Metamath Proof Explorer


Theorem ee23an

Description: e23an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee23an.1 φ ψ χ
ee23an.2 φ ψ θ τ
ee23an.3 χ τ η
Assertion ee23an φ ψ θ η

Proof

Step Hyp Ref Expression
1 ee23an.1 φ ψ χ
2 ee23an.2 φ ψ θ τ
3 ee23an.3 χ τ η
4 1 a1dd φ ψ θ χ
5 4 2 3 ee33an φ ψ θ η