Metamath Proof Explorer


Theorem ee30an

Description: Conjunction form of ee30 . (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee30an.1 φ ψ χ θ
ee30an.2 τ
ee30an.3 θ τ η
Assertion ee30an φ ψ χ η

Proof

Step Hyp Ref Expression
1 ee30an.1 φ ψ χ θ
2 ee30an.2 τ
3 ee30an.3 θ τ η
4 3 ex θ τ η
5 1 2 4 ee30 φ ψ χ η