Metamath Proof Explorer


Theorem ee31an

Description: e31an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee31an.1 φ ψ χ θ
ee31an.2 φ τ
ee31an.3 θ τ η
Assertion ee31an φ ψ χ η

Proof

Step Hyp Ref Expression
1 ee31an.1 φ ψ χ θ
2 ee31an.2 φ τ
3 ee31an.3 θ τ η
4 2 a1d φ χ τ
5 4 a1d φ ψ χ τ
6 1 5 3 ee33an φ ψ χ η