Metamath Proof Explorer


Theorem ee32

Description: e32 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee32.1 φ ψ χ θ
ee32.2 φ ψ τ
ee32.3 θ τ η
Assertion ee32 φ ψ χ η

Proof

Step Hyp Ref Expression
1 ee32.1 φ ψ χ θ
2 ee32.2 φ ψ τ
3 ee32.3 θ τ η
4 2 a1dd φ ψ χ τ
5 1 4 3 ee33 φ ψ χ η