Metamath Proof Explorer


Theorem ee32

Description: e32 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee32.1 φψχθ
ee32.2 φψτ
ee32.3 θτη
Assertion ee32 φψχη

Proof

Step Hyp Ref Expression
1 ee32.1 φψχθ
2 ee32.2 φψτ
3 ee32.3 θτη
4 2 a1dd φψχτ
5 1 4 3 ee33 φψχη