Metamath Proof Explorer


Theorem ee32an

Description: e33an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee32an.1 φ ψ χ θ
ee32an.2 φ ψ τ
ee32an.3 θ τ η
Assertion ee32an φ ψ χ η

Proof

Step Hyp Ref Expression
1 ee32an.1 φ ψ χ θ
2 ee32an.2 φ ψ τ
3 ee32an.3 θ τ η
4 2 a1dd φ ψ χ τ
5 1 4 3 ee33an φ ψ χ η