Metamath Proof Explorer


Theorem ee33an

Description: e33an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee33an.1 φ ψ χ θ
ee33an.2 φ ψ χ τ
ee33an.3 θ τ η
Assertion ee33an φ ψ χ η

Proof

Step Hyp Ref Expression
1 ee33an.1 φ ψ χ θ
2 ee33an.2 φ ψ χ τ
3 ee33an.3 θ τ η
4 3 ex θ τ η
5 1 2 4 ee33 φ ψ χ η