Metamath Proof Explorer


Theorem ee4anv

Description: Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv . (Contributed by NM, 31-Jul-1995)

Ref Expression
Assertion ee4anv x y z w φ ψ x y φ z w ψ

Proof

Step Hyp Ref Expression
1 excom y z w φ ψ z y w φ ψ
2 1 exbii x y z w φ ψ x z y w φ ψ
3 eeanv y w φ ψ y φ w ψ
4 3 2exbii x z y w φ ψ x z y φ w ψ
5 eeanv x z y φ w ψ x y φ z w ψ
6 2 4 5 3bitri x y z w φ ψ x y φ z w ψ