Metamath Proof Explorer


Theorem eel0000

Description: Elimination rule similar to mp4an , except with a left-nested conjunction unification theorem. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel0000.1 φ
eel0000.2 ψ
eel0000.3 χ
eel0000.4 θ
eel0000.5 φ ψ χ θ τ
Assertion eel0000 τ

Proof

Step Hyp Ref Expression
1 eel0000.1 φ
2 eel0000.2 ψ
3 eel0000.3 χ
4 eel0000.4 θ
5 eel0000.5 φ ψ χ θ τ
6 5 exp41 φ ψ χ θ τ
7 1 2 6 mp2 χ θ τ
8 3 4 7 mp2 τ