Metamath Proof Explorer


Theorem eel0T1

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel0T1.1 φ
eel0T1.2 ψ
eel0T1.3 χ θ
eel0T1.4 φ ψ θ τ
Assertion eel0T1 χ τ

Proof

Step Hyp Ref Expression
1 eel0T1.1 φ
2 eel0T1.2 ψ
3 eel0T1.3 χ θ
4 eel0T1.4 φ ψ θ τ
5 3anass φ χ φ χ
6 simpr φ χ χ
7 1 jctl χ φ χ
8 6 7 impbii φ χ χ
9 truan χ χ
10 5 8 9 3bitri φ χ χ
11 2 4 syl3an2 φ θ τ
12 3 11 syl3an3 φ χ τ
13 10 12 sylbir χ τ