Metamath Proof Explorer


Theorem eel0TT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel0TT.1 φ
eel0TT.2 ψ
eel0TT.3 χ
eel0TT.4 φ ψ χ θ
Assertion eel0TT θ

Proof

Step Hyp Ref Expression
1 eel0TT.1 φ
2 eel0TT.2 ψ
3 eel0TT.3 χ
4 eel0TT.4 φ ψ χ θ
5 truan χ χ
6 1 4 mp3an1 ψ χ θ
7 2 6 sylan χ θ
8 5 7 sylbir χ θ
9 3 8 syl θ
10 9 mptru θ