Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eel0TT.1 |
|
|
|
eel0TT.2 |
|
|
|
eel0TT.3 |
|
|
|
eel0TT.4 |
|
|
Assertion |
eel0TT |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eel0TT.1 |
|
2 |
|
eel0TT.2 |
|
3 |
|
eel0TT.3 |
|
4 |
|
eel0TT.4 |
|
5 |
|
truan |
|
6 |
1 4
|
mp3an1 |
|
7 |
2 6
|
sylan |
|
8 |
5 7
|
sylbir |
|
9 |
3 8
|
syl |
|
10 |
9
|
mptru |
|