Metamath Proof Explorer


Theorem eel11111

Description: Five-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl113anc except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel11111.1 φ ψ
eel11111.2 φ χ
eel11111.3 φ θ
eel11111.4 φ τ
eel11111.5 φ η
eel11111.6 ψ χ θ τ η ζ
Assertion eel11111 φ ζ

Proof

Step Hyp Ref Expression
1 eel11111.1 φ ψ
2 eel11111.2 φ χ
3 eel11111.3 φ θ
4 eel11111.4 φ τ
5 eel11111.5 φ η
6 eel11111.6 ψ χ θ τ η ζ
7 6 exp41 ψ χ θ τ η ζ
8 7 ex ψ χ θ τ η ζ
9 1 2 3 8 syl3c φ τ η ζ
10 4 5 9 mp2d φ ζ