Metamath Proof Explorer


Theorem eel12131

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel12131.1 φ ψ
eel12131.2 φ χ θ
eel12131.3 φ τ η
eel12131.4 ψ θ η ζ
Assertion eel12131 φ χ τ ζ

Proof

Step Hyp Ref Expression
1 eel12131.1 φ ψ
2 eel12131.2 φ χ θ
3 eel12131.3 φ τ η
4 eel12131.4 ψ θ η ζ
5 4 3exp ψ θ η ζ
6 1 2 5 syl2imc φ χ φ η ζ
7 6 ex φ χ φ η ζ
8 7 pm2.43b χ φ η ζ
9 8 com13 η φ χ ζ
10 3 9 syl φ τ φ χ ζ
11 10 ex φ τ φ χ ζ
12 11 pm2.43b τ φ χ ζ
13 12 3imp231 φ χ τ ζ