Metamath Proof Explorer


Theorem eel2131

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016)

Ref Expression
Hypotheses eel2131.1 φ ψ χ
eel2131.2 φ θ τ
eel2131.3 χ τ η
Assertion eel2131 φ ψ θ η

Proof

Step Hyp Ref Expression
1 eel2131.1 φ ψ χ
2 eel2131.2 φ θ τ
3 eel2131.3 χ τ η
4 1 2 3 syl2an φ ψ φ θ η
5 4 3impdi φ ψ θ η