Metamath Proof Explorer


Theorem eelT00

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT00.1 φ
eelT00.2 ψ
eelT00.3 χ
eelT00.4 φ ψ χ θ
Assertion eelT00 θ

Proof

Step Hyp Ref Expression
1 eelT00.1 φ
2 eelT00.2 ψ
3 eelT00.3 χ
4 eelT00.4 φ ψ χ θ
5 3anass ψ χ ψ χ
6 truan ψ χ ψ χ
7 5 6 bitri ψ χ ψ χ
8 1 4 syl3an1 ψ χ θ
9 7 8 sylbir ψ χ θ
10 2 9 mpan χ θ
11 3 10 ax-mp θ