Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelT01.1 |
|
|
|
eelT01.2 |
|
|
|
eelT01.3 |
|
|
|
eelT01.4 |
|
|
Assertion |
eelT01 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eelT01.1 |
|
2 |
|
eelT01.2 |
|
3 |
|
eelT01.3 |
|
4 |
|
eelT01.4 |
|
5 |
|
3anass |
|
6 |
|
truan |
|
7 |
|
simpr |
|
8 |
2
|
jctl |
|
9 |
7 8
|
impbii |
|
10 |
5 6 9
|
3bitri |
|
11 |
1 4
|
syl3an1 |
|
12 |
3 11
|
syl3an3 |
|
13 |
10 12
|
sylbir |
|