Metamath Proof Explorer


Theorem eelT01

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT01.1 φ
eelT01.2 ψ
eelT01.3 χ θ
eelT01.4 φ ψ θ τ
Assertion eelT01 χ τ

Proof

Step Hyp Ref Expression
1 eelT01.1 φ
2 eelT01.2 ψ
3 eelT01.3 χ θ
4 eelT01.4 φ ψ θ τ
5 3anass ψ χ ψ χ
6 truan ψ χ ψ χ
7 simpr ψ χ χ
8 2 jctl χ ψ χ
9 7 8 impbii ψ χ χ
10 5 6 9 3bitri ψ χ χ
11 1 4 syl3an1 ψ θ τ
12 3 11 syl3an3 ψ χ τ
13 10 12 sylbir χ τ