Metamath Proof Explorer


Theorem eelT11

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT11.1 φ
eelT11.2 ψ χ
eelT11.3 ψ θ
eelT11.4 φ χ θ τ
Assertion eelT11 ψ τ

Proof

Step Hyp Ref Expression
1 eelT11.1 φ
2 eelT11.2 ψ χ
3 eelT11.3 ψ θ
4 eelT11.4 φ χ θ τ
5 3anass ψ ψ ψ ψ
6 truan ψ ψ ψ ψ
7 anidm ψ ψ ψ
8 5 6 7 3bitri ψ ψ ψ
9 1 4 syl3an1 χ θ τ
10 2 9 syl3an2 ψ θ τ
11 3 10 syl3an3 ψ ψ τ
12 8 11 sylbir ψ τ