Metamath Proof Explorer


Theorem eelT12

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT12.1 φ
eelT12.2 ψ χ
eelT12.3 θ τ
eelT12.4 φ χ τ η
Assertion eelT12 ψ θ η

Proof

Step Hyp Ref Expression
1 eelT12.1 φ
2 eelT12.2 ψ χ
3 eelT12.3 θ τ
4 eelT12.4 φ χ τ η
5 3anass ψ θ ψ θ
6 truan ψ θ ψ θ
7 5 6 bitri ψ θ ψ θ
8 1 4 syl3an1 χ τ η
9 2 8 syl3an2 ψ τ η
10 3 9 syl3an3 ψ θ η
11 7 10 sylbir ψ θ η