Metamath Proof Explorer
		
		
		
		Description:  An elimination deduction.  (Contributed by Alan Sare, 4-Feb-2017)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						eelT12.1 | 
						   | 
					
					
						 | 
						 | 
						eelT12.2 | 
						   | 
					
					
						 | 
						 | 
						eelT12.3 | 
						   | 
					
					
						 | 
						 | 
						eelT12.4 | 
						   | 
					
				
					 | 
					Assertion | 
					eelT12 | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eelT12.1 | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							eelT12.2 | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							eelT12.3 | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							eelT12.4 | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							3anass | 
							   | 
						
						
							| 6 | 
							
								
							 | 
							truan | 
							   | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitri | 
							   | 
						
						
							| 8 | 
							
								1 4
							 | 
							syl3an1 | 
							   | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl3an2 | 
							   | 
						
						
							| 10 | 
							
								3 9
							 | 
							syl3an3 | 
							   | 
						
						
							| 11 | 
							
								7 10
							 | 
							sylbir | 
							   |