Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelTT.1 |
|
|
|
eelTT.2 |
|
|
|
eelTT.3 |
|
|
Assertion |
eelTT |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eelTT.1 |
|
2 |
|
eelTT.2 |
|
3 |
|
eelTT.3 |
|
4 |
|
truan |
|
5 |
1 3
|
sylan |
|
6 |
4 5
|
sylbir |
|
7 |
2 6
|
syl |
|
8 |
7
|
mptru |
|