Metamath Proof Explorer


Theorem eelTT1

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelTT1.1 φ
eelTT1.2 ψ
eelTT1.3 χ θ
eelTT1.4 φ ψ θ τ
Assertion eelTT1 χ τ

Proof

Step Hyp Ref Expression
1 eelTT1.1 φ
2 eelTT1.2 ψ
3 eelTT1.3 χ θ
4 eelTT1.4 φ ψ θ τ
5 3anass χ χ
6 anabs5 χ χ
7 truan χ χ
8 5 6 7 3bitri χ χ
9 1 4 syl3an1 ψ θ τ
10 2 9 syl3an2 θ τ
11 3 10 syl3an3 χ τ
12 8 11 sylbir χ τ