Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelTTT.1 |
|
|
|
eelTTT.2 |
|
|
|
eelTTT.3 |
|
|
|
eelTTT.4 |
|
|
Assertion |
eelTTT |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eelTTT.1 |
|
2 |
|
eelTTT.2 |
|
3 |
|
eelTTT.3 |
|
4 |
|
eelTTT.4 |
|
5 |
|
truan |
|
6 |
|
3anass |
|
7 |
|
truan |
|
8 |
6 7
|
bitri |
|
9 |
1 4
|
syl3an1 |
|
10 |
8 9
|
sylbir |
|
11 |
2 10
|
sylan |
|
12 |
5 11
|
sylbir |
|
13 |
3 12
|
syl |
|
14 |
13
|
mptru |
|