| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvexd |
|
| 2 |
|
simpl |
|
| 3 |
|
simprl |
|
| 4 |
|
eengbas |
|
| 5 |
4
|
adantr |
|
| 6 |
3 5
|
eleqtrrd |
|
| 7 |
|
simprr |
|
| 8 |
7 5
|
eleqtrrd |
|
| 9 |
|
axcgrrflx |
|
| 10 |
2 6 8 9
|
syl3anc |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
2 11 12 3 7 7 3
|
ecgrtg |
|
| 14 |
10 13
|
mpbid |
|
| 15 |
14
|
ralrimivva |
|
| 16 |
|
simpl |
|
| 17 |
|
simpr1 |
|
| 18 |
|
simpr2 |
|
| 19 |
|
simpr3 |
|
| 20 |
16 11 12 17 18 19 19
|
ecgrtg |
|
| 21 |
6
|
3adantr3 |
|
| 22 |
8
|
3adantr3 |
|
| 23 |
4
|
adantr |
|
| 24 |
19 23
|
eleqtrrd |
|
| 25 |
|
axcgrid |
|
| 26 |
16 21 22 24 25
|
syl13anc |
|
| 27 |
20 26
|
sylbird |
|
| 28 |
27
|
ralrimivvva |
|
| 29 |
1 15 28
|
jca32 |
|
| 30 |
|
eqid |
|
| 31 |
11 12 30
|
istrkgc |
|
| 32 |
29 31
|
sylibr |
|
| 33 |
2 11 30 3 3 7
|
ebtwntg |
|
| 34 |
|
axbtwnid |
|
| 35 |
2 8 6 34
|
syl3anc |
|
| 36 |
33 35
|
sylbird |
|
| 37 |
36
|
imp |
|
| 38 |
37
|
equcomd |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
ralrimivva |
|
| 41 |
|
simpll |
|
| 42 |
6
|
adantr |
|
| 43 |
8
|
adantr |
|
| 44 |
3
|
adantr |
|
| 45 |
7
|
adantr |
|
| 46 |
|
simpr1 |
|
| 47 |
41 44 45 46 24
|
syl13anc |
|
| 48 |
|
simpr2 |
|
| 49 |
41 4
|
syl |
|
| 50 |
48 49
|
eleqtrrd |
|
| 51 |
|
simpr3 |
|
| 52 |
51 49
|
eleqtrrd |
|
| 53 |
|
axpasch |
|
| 54 |
41 42 43 47 50 52 53
|
syl132anc |
|
| 55 |
41 11 30 44 46 48
|
ebtwntg |
|
| 56 |
41 11 30 45 46 51
|
ebtwntg |
|
| 57 |
55 56
|
anbi12d |
|
| 58 |
|
simplll |
|
| 59 |
48
|
adantr |
|
| 60 |
45
|
adantr |
|
| 61 |
|
simpr |
|
| 62 |
49
|
adantr |
|
| 63 |
61 62
|
eleqtrd |
|
| 64 |
58 11 30 59 60 63
|
ebtwntg |
|
| 65 |
51
|
adantr |
|
| 66 |
44
|
adantr |
|
| 67 |
58 11 30 65 66 63
|
ebtwntg |
|
| 68 |
64 67
|
anbi12d |
|
| 69 |
49 68
|
rexeqbidva |
|
| 70 |
54 57 69
|
3imtr3d |
|
| 71 |
70
|
ralrimivvva |
|
| 72 |
71
|
ralrimivva |
|
| 73 |
|
simpl |
|
| 74 |
|
elpwi |
|
| 75 |
74
|
ad2antrl |
|
| 76 |
4
|
adantr |
|
| 77 |
75 76
|
sseqtrrd |
|
| 78 |
|
elpwi |
|
| 79 |
78
|
ad2antll |
|
| 80 |
79 76
|
sseqtrrd |
|
| 81 |
|
simpll |
|
| 82 |
|
simplrl |
|
| 83 |
|
simplrr |
|
| 84 |
|
simpr |
|
| 85 |
|
axcont |
|
| 86 |
81 82 83 84 85
|
syl13anc |
|
| 87 |
86
|
ex |
|
| 88 |
73 77 80 87
|
syl12anc |
|
| 89 |
|
simplll |
|
| 90 |
|
simplr |
|
| 91 |
76
|
ad2antrr |
|
| 92 |
90 91
|
eleqtrd |
|
| 93 |
79
|
ad2antrr |
|
| 94 |
|
simprr |
|
| 95 |
93 94
|
sseldd |
|
| 96 |
75
|
ad2antrr |
|
| 97 |
|
simprl |
|
| 98 |
96 97
|
sseldd |
|
| 99 |
89 11 30 92 95 98
|
ebtwntg |
|
| 100 |
99
|
2ralbidva |
|
| 101 |
76 100
|
rexeqbidva |
|
| 102 |
|
simplll |
|
| 103 |
75
|
ad2antrr |
|
| 104 |
|
simprl |
|
| 105 |
103 104
|
sseldd |
|
| 106 |
79
|
ad2antrr |
|
| 107 |
|
simprr |
|
| 108 |
106 107
|
sseldd |
|
| 109 |
|
simplr |
|
| 110 |
76
|
ad2antrr |
|
| 111 |
109 110
|
eleqtrd |
|
| 112 |
102 11 30 105 108 111
|
ebtwntg |
|
| 113 |
112
|
2ralbidva |
|
| 114 |
76 113
|
rexeqbidva |
|
| 115 |
88 101 114
|
3imtr3d |
|
| 116 |
115
|
ralrimivva |
|
| 117 |
40 72 116
|
3jca |
|
| 118 |
11 12 30
|
istrkgb |
|
| 119 |
1 117 118
|
sylanbrc |
|
| 120 |
32 119
|
elind |
|
| 121 |
|
simplll |
|
| 122 |
3
|
ad2antrr |
|
| 123 |
121 4
|
syl |
|
| 124 |
122 123
|
eleqtrrd |
|
| 125 |
7
|
ad2antrr |
|
| 126 |
125 123
|
eleqtrrd |
|
| 127 |
|
simplr1 |
|
| 128 |
127 123
|
eleqtrrd |
|
| 129 |
|
simplr2 |
|
| 130 |
129 123
|
eleqtrrd |
|
| 131 |
|
simplr3 |
|
| 132 |
131 123
|
eleqtrrd |
|
| 133 |
|
simpr1 |
|
| 134 |
133 123
|
eleqtrrd |
|
| 135 |
|
simpr2 |
|
| 136 |
135 123
|
eleqtrrd |
|
| 137 |
|
simpr3 |
|
| 138 |
137 123
|
eleqtrrd |
|
| 139 |
|
3anass |
|
| 140 |
|
ax5seg |
|
| 141 |
139 140
|
biimtrrid |
|
| 142 |
121 124 126 128 130 132 134 136 138 141
|
syl333anc |
|
| 143 |
121 11 30 122 127 125
|
ebtwntg |
|
| 144 |
121 11 30 131 135 133
|
ebtwntg |
|
| 145 |
143 144
|
3anbi23d |
|
| 146 |
121 11 12 122 125 131 133
|
ecgrtg |
|
| 147 |
121 11 12 125 127 133 135
|
ecgrtg |
|
| 148 |
146 147
|
anbi12d |
|
| 149 |
121 11 12 122 129 131 137
|
ecgrtg |
|
| 150 |
121 11 12 125 129 133 137
|
ecgrtg |
|
| 151 |
149 150
|
anbi12d |
|
| 152 |
148 151
|
anbi12d |
|
| 153 |
145 152
|
anbi12d |
|
| 154 |
121 11 12 127 129 135 137
|
ecgrtg |
|
| 155 |
142 153 154
|
3imtr3d |
|
| 156 |
155
|
ralrimivvva |
|
| 157 |
156
|
ralrimivvva |
|
| 158 |
157
|
ralrimivva |
|
| 159 |
|
simpll |
|
| 160 |
6
|
adantr |
|
| 161 |
8
|
adantr |
|
| 162 |
|
simprl |
|
| 163 |
159 4
|
syl |
|
| 164 |
162 163
|
eleqtrrd |
|
| 165 |
|
simprr |
|
| 166 |
165 163
|
eleqtrrd |
|
| 167 |
|
axsegcon |
|
| 168 |
159 160 161 164 166 167
|
syl122anc |
|
| 169 |
|
simplll |
|
| 170 |
3
|
ad2antrr |
|
| 171 |
|
simpr |
|
| 172 |
163
|
adantr |
|
| 173 |
171 172
|
eleqtrd |
|
| 174 |
7
|
ad2antrr |
|
| 175 |
169 11 30 170 173 174
|
ebtwntg |
|
| 176 |
|
simplrl |
|
| 177 |
|
simplrr |
|
| 178 |
169 11 12 174 173 176 177
|
ecgrtg |
|
| 179 |
175 178
|
anbi12d |
|
| 180 |
163 179
|
rexeqbidva |
|
| 181 |
168 180
|
mpbid |
|
| 182 |
181
|
ralrimivva |
|
| 183 |
182
|
ralrimivva |
|
| 184 |
1 158 183
|
jca32 |
|
| 185 |
11 12 30
|
istrkgcb |
|
| 186 |
184 185
|
sylibr |
|
| 187 |
11 30
|
elntg |
|
| 188 |
11 12 30
|
istrkgl |
|
| 189 |
1 187 188
|
sylanbrc |
|
| 190 |
186 189
|
elind |
|
| 191 |
120 190
|
elind |
|
| 192 |
|
df-trkg |
|
| 193 |
191 192
|
eleqtrrdi |
|