Metamath Proof Explorer


Theorem eexinst11

Description: exinst11 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eexinst11.1 φ x ψ
eexinst11.2 φ ψ χ
eexinst11.3 φ x φ
eexinst11.4 χ x χ
Assertion eexinst11 φ χ

Proof

Step Hyp Ref Expression
1 eexinst11.1 φ x ψ
2 eexinst11.2 φ ψ χ
3 eexinst11.3 φ x φ
4 eexinst11.4 χ x χ
5 3 4 2 exlimdh φ x ψ χ
6 1 5 syl5com φ φ χ
7 6 pm2.43i φ χ