Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Conventional Metamath proofs, some derived from VD proofs
eexinst11
Metamath Proof Explorer
Description: exinst11 without virtual deductions. (Contributed by Alan Sare , 21-Apr-2013) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
eexinst11.1
⊢ φ → ∃ x ψ
eexinst11.2
⊢ φ → ψ → χ
eexinst11.3
⊢ φ → ∀ x φ
eexinst11.4
⊢ χ → ∀ x χ
Assertion
eexinst11
⊢ φ → χ
Proof
Step
Hyp
Ref
Expression
1
eexinst11.1
⊢ φ → ∃ x ψ
2
eexinst11.2
⊢ φ → ψ → χ
3
eexinst11.3
⊢ φ → ∀ x φ
4
eexinst11.4
⊢ χ → ∀ x χ
5
3 4 2
exlimdh
⊢ φ → ∃ x ψ → χ
6
1 5
syl5com
⊢ φ → φ → χ
7
6
pm2.43i
⊢ φ → χ