Metamath Proof Explorer


Theorem ef0

Description: Value of the exponential function at 0. Equation 2 of Gleason p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion ef0 e 0 = 1

Proof

Step Hyp Ref Expression
1 0cn 0
2 eqid n 0 0 n n ! = n 0 0 n n !
3 2 efcvg 0 seq 0 + n 0 0 n n ! e 0
4 1 3 ax-mp seq 0 + n 0 0 n n ! e 0
5 eqid 0 = 0
6 2 ef0lem 0 = 0 seq 0 + n 0 0 n n ! 1
7 5 6 ax-mp seq 0 + n 0 0 n n ! 1
8 climuni seq 0 + n 0 0 n n ! e 0 seq 0 + n 0 0 n n ! 1 e 0 = 1
9 4 7 8 mp2an e 0 = 1