Step |
Hyp |
Ref |
Expression |
1 |
|
eftval.1 |
|
2 |
|
simpr |
|
3 |
|
nn0uz |
|
4 |
2 3
|
eleqtrrdi |
|
5 |
|
elnn0 |
|
6 |
4 5
|
sylib |
|
7 |
|
nnnn0 |
|
8 |
7
|
adantl |
|
9 |
1
|
eftval |
|
10 |
8 9
|
syl |
|
11 |
|
oveq1 |
|
12 |
|
0exp |
|
13 |
11 12
|
sylan9eq |
|
14 |
13
|
oveq1d |
|
15 |
|
faccl |
|
16 |
|
nncn |
|
17 |
|
nnne0 |
|
18 |
16 17
|
div0d |
|
19 |
8 15 18
|
3syl |
|
20 |
10 14 19
|
3eqtrd |
|
21 |
|
nnne0 |
|
22 |
|
velsn |
|
23 |
22
|
necon3bbii |
|
24 |
21 23
|
sylibr |
|
25 |
24
|
adantl |
|
26 |
25
|
iffalsed |
|
27 |
20 26
|
eqtr4d |
|
28 |
|
fveq2 |
|
29 |
|
oveq1 |
|
30 |
|
0exp0e1 |
|
31 |
29 30
|
eqtrdi |
|
32 |
31
|
oveq1d |
|
33 |
|
0nn0 |
|
34 |
1
|
eftval |
|
35 |
33 34
|
ax-mp |
|
36 |
|
fac0 |
|
37 |
36
|
oveq2i |
|
38 |
|
1div1e1 |
|
39 |
37 38
|
eqtr2i |
|
40 |
32 35 39
|
3eqtr4g |
|
41 |
28 40
|
sylan9eqr |
|
42 |
|
simpr |
|
43 |
42 22
|
sylibr |
|
44 |
43
|
iftrued |
|
45 |
41 44
|
eqtr4d |
|
46 |
27 45
|
jaodan |
|
47 |
6 46
|
syldan |
|
48 |
33 3
|
eleqtri |
|
49 |
48
|
a1i |
|
50 |
|
1cnd |
|
51 |
|
fz0sn |
|
52 |
51
|
eqimss2i |
|
53 |
52
|
a1i |
|
54 |
47 49 50 53
|
fsumcvg2 |
|
55 |
|
0z |
|
56 |
55 40
|
seq1i |
|
57 |
54 56
|
breqtrd |
|