Metamath Proof Explorer


Theorem ef2pi

Description: The exponential of 2pi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion ef2pi e i 2 π = 1

Proof

Step Hyp Ref Expression
1 2cn 2
2 picn π
3 1 2 mulcli 2 π
4 efival 2 π e i 2 π = cos 2 π + i sin 2 π
5 3 4 ax-mp e i 2 π = cos 2 π + i sin 2 π
6 cos2pi cos 2 π = 1
7 sin2pi sin 2 π = 0
8 7 oveq2i i sin 2 π = i 0
9 it0e0 i 0 = 0
10 8 9 eqtri i sin 2 π = 0
11 6 10 oveq12i cos 2 π + i sin 2 π = 1 + 0
12 1p0e1 1 + 0 = 1
13 11 12 eqtri cos 2 π + i sin 2 π = 1
14 5 13 eqtri e i 2 π = 1