Step |
Hyp |
Ref |
Expression |
1 |
|
ef4p.1 |
|
2 |
|
df-4 |
|
3 |
|
3nn0 |
|
4 |
|
id |
|
5 |
|
ax-1cn |
|
6 |
|
addcl |
|
7 |
5 6
|
mpan |
|
8 |
|
sqcl |
|
9 |
8
|
halfcld |
|
10 |
7 9
|
addcld |
|
11 |
|
df-3 |
|
12 |
|
2nn0 |
|
13 |
|
df-2 |
|
14 |
|
1nn0 |
|
15 |
5
|
a1i |
|
16 |
|
1e0p1 |
|
17 |
|
0nn0 |
|
18 |
|
0cnd |
|
19 |
1
|
efval2 |
|
20 |
|
nn0uz |
|
21 |
20
|
sumeq1i |
|
22 |
19 21
|
eqtr2di |
|
23 |
22
|
oveq2d |
|
24 |
|
efcl |
|
25 |
24
|
addid2d |
|
26 |
23 25
|
eqtr2d |
|
27 |
|
eft0val |
|
28 |
27
|
oveq2d |
|
29 |
|
0p1e1 |
|
30 |
28 29
|
eqtrdi |
|
31 |
1 16 17 4 18 26 30
|
efsep |
|
32 |
|
exp1 |
|
33 |
|
fac1 |
|
34 |
33
|
a1i |
|
35 |
32 34
|
oveq12d |
|
36 |
|
div1 |
|
37 |
35 36
|
eqtrd |
|
38 |
37
|
oveq2d |
|
39 |
1 13 14 4 15 31 38
|
efsep |
|
40 |
|
fac2 |
|
41 |
40
|
oveq2i |
|
42 |
41
|
oveq2i |
|
43 |
42
|
a1i |
|
44 |
1 11 12 4 7 39 43
|
efsep |
|
45 |
|
fac3 |
|
46 |
45
|
oveq2i |
|
47 |
46
|
oveq2i |
|
48 |
47
|
a1i |
|
49 |
1 2 3 4 10 44 48
|
efsep |
|