| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ef4p.1 |
|
| 2 |
|
df-4 |
|
| 3 |
|
3nn0 |
|
| 4 |
|
id |
|
| 5 |
|
ax-1cn |
|
| 6 |
|
addcl |
|
| 7 |
5 6
|
mpan |
|
| 8 |
|
sqcl |
|
| 9 |
8
|
halfcld |
|
| 10 |
7 9
|
addcld |
|
| 11 |
|
df-3 |
|
| 12 |
|
2nn0 |
|
| 13 |
|
df-2 |
|
| 14 |
|
1nn0 |
|
| 15 |
5
|
a1i |
|
| 16 |
|
1e0p1 |
|
| 17 |
|
0nn0 |
|
| 18 |
|
0cnd |
|
| 19 |
1
|
efval2 |
|
| 20 |
|
nn0uz |
|
| 21 |
20
|
sumeq1i |
|
| 22 |
19 21
|
eqtr2di |
|
| 23 |
22
|
oveq2d |
|
| 24 |
|
efcl |
|
| 25 |
24
|
addlidd |
|
| 26 |
23 25
|
eqtr2d |
|
| 27 |
|
eft0val |
|
| 28 |
27
|
oveq2d |
|
| 29 |
|
0p1e1 |
|
| 30 |
28 29
|
eqtrdi |
|
| 31 |
1 16 17 4 18 26 30
|
efsep |
|
| 32 |
|
exp1 |
|
| 33 |
|
fac1 |
|
| 34 |
33
|
a1i |
|
| 35 |
32 34
|
oveq12d |
|
| 36 |
|
div1 |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
37
|
oveq2d |
|
| 39 |
1 13 14 4 15 31 38
|
efsep |
|
| 40 |
|
fac2 |
|
| 41 |
40
|
oveq2i |
|
| 42 |
41
|
oveq2i |
|
| 43 |
42
|
a1i |
|
| 44 |
1 11 12 4 7 39 43
|
efsep |
|
| 45 |
|
fac3 |
|
| 46 |
45
|
oveq2i |
|
| 47 |
46
|
oveq2i |
|
| 48 |
47
|
a1i |
|
| 49 |
1 2 3 4 10 44 48
|
efsep |
|