Step |
Hyp |
Ref |
Expression |
1 |
|
efabl.1 |
|
2 |
|
efabl.2 |
|
3 |
|
efabl.3 |
|
4 |
|
efabl.4 |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
simp1 |
|
10 |
|
simp2 |
|
11 |
|
eqid |
|
12 |
11
|
subgbas |
|
13 |
4 12
|
syl |
|
14 |
13
|
3ad2ant1 |
|
15 |
10 14
|
eleqtrrd |
|
16 |
|
simp3 |
|
17 |
16 14
|
eleqtrrd |
|
18 |
3 4
|
jca |
|
19 |
1
|
efgh |
|
20 |
18 19
|
syl3an1 |
|
21 |
|
cnfldadd |
|
22 |
11 21
|
ressplusg |
|
23 |
4 22
|
syl |
|
24 |
23
|
3ad2ant1 |
|
25 |
24
|
oveqd |
|
26 |
25
|
fveq2d |
|
27 |
|
mptexg |
|
28 |
1 27
|
eqeltrid |
|
29 |
|
rnexg |
|
30 |
4 28 29
|
3syl |
|
31 |
|
eqid |
|
32 |
|
cnfldmul |
|
33 |
31 32
|
mgpplusg |
|
34 |
2 33
|
ressplusg |
|
35 |
30 34
|
syl |
|
36 |
35
|
3ad2ant1 |
|
37 |
36
|
oveqd |
|
38 |
20 26 37
|
3eqtr3d |
|
39 |
9 15 17 38
|
syl3anc |
|
40 |
|
fvex |
|
41 |
40 1
|
fnmpti |
|
42 |
|
dffn4 |
|
43 |
41 42
|
mpbi |
|
44 |
|
eqidd |
|
45 |
|
eff |
|
46 |
45
|
a1i |
|
47 |
3
|
adantr |
|
48 |
|
cnfldbas |
|
49 |
48
|
subgss |
|
50 |
4 49
|
syl |
|
51 |
50
|
sselda |
|
52 |
47 51
|
mulcld |
|
53 |
46 52
|
ffvelrnd |
|
54 |
53
|
ralrimiva |
|
55 |
1
|
rnmptss |
|
56 |
31 48
|
mgpbas |
|
57 |
2 56
|
ressbas2 |
|
58 |
54 55 57
|
3syl |
|
59 |
44 13 58
|
foeq123d |
|
60 |
43 59
|
mpbii |
|
61 |
|
cnring |
|
62 |
|
ringabl |
|
63 |
61 62
|
ax-mp |
|
64 |
11
|
subgabl |
|
65 |
63 4 64
|
sylancr |
|
66 |
5 6 7 8 39 60 65
|
ghmabl |
|