Metamath Proof Explorer


Theorem efadd

Description: Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006) (Proof shortened by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion efadd A B e A + B = e A e B

Proof

Step Hyp Ref Expression
1 eqid n 0 A n n ! = n 0 A n n !
2 eqid n 0 B n n ! = n 0 B n n !
3 eqid n 0 A + B n n ! = n 0 A + B n n !
4 simpl A B A
5 simpr A B B
6 1 2 3 4 5 efaddlem A B e A + B = e A e B