Step |
Hyp |
Ref |
Expression |
1 |
|
efadd.1 |
|
2 |
|
efadd.2 |
|
3 |
|
efadd.3 |
|
4 |
|
efadd.4 |
|
5 |
|
efadd.5 |
|
6 |
4 5
|
addcld |
|
7 |
3
|
efcvg |
|
8 |
6 7
|
syl |
|
9 |
1
|
eftval |
|
10 |
9
|
adantl |
|
11 |
|
absexp |
|
12 |
4 11
|
sylan |
|
13 |
|
faccl |
|
14 |
13
|
adantl |
|
15 |
|
nnre |
|
16 |
|
nnnn0 |
|
17 |
16
|
nn0ge0d |
|
18 |
15 17
|
absidd |
|
19 |
14 18
|
syl |
|
20 |
12 19
|
oveq12d |
|
21 |
|
expcl |
|
22 |
4 21
|
sylan |
|
23 |
14
|
nncnd |
|
24 |
14
|
nnne0d |
|
25 |
22 23 24
|
absdivd |
|
26 |
|
eqid |
|
27 |
26
|
eftval |
|
28 |
27
|
adantl |
|
29 |
20 25 28
|
3eqtr4rd |
|
30 |
|
eftcl |
|
31 |
4 30
|
sylan |
|
32 |
2
|
eftval |
|
33 |
32
|
adantl |
|
34 |
|
eftcl |
|
35 |
5 34
|
sylan |
|
36 |
3
|
eftval |
|
37 |
36
|
adantl |
|
38 |
4
|
adantr |
|
39 |
5
|
adantr |
|
40 |
|
simpr |
|
41 |
|
binom |
|
42 |
38 39 40 41
|
syl3anc |
|
43 |
42
|
oveq1d |
|
44 |
|
fzfid |
|
45 |
|
faccl |
|
46 |
45
|
adantl |
|
47 |
46
|
nncnd |
|
48 |
|
bccl2 |
|
49 |
48
|
adantl |
|
50 |
49
|
nncnd |
|
51 |
4
|
ad2antrr |
|
52 |
|
fznn0sub |
|
53 |
52
|
adantl |
|
54 |
51 53
|
expcld |
|
55 |
5
|
ad2antrr |
|
56 |
|
elfznn0 |
|
57 |
56
|
adantl |
|
58 |
55 57
|
expcld |
|
59 |
54 58
|
mulcld |
|
60 |
50 59
|
mulcld |
|
61 |
46
|
nnne0d |
|
62 |
44 47 60 61
|
fsumdivc |
|
63 |
51 57
|
expcld |
|
64 |
57 13
|
syl |
|
65 |
64
|
nncnd |
|
66 |
64
|
nnne0d |
|
67 |
63 65 66
|
divcld |
|
68 |
2
|
eftval |
|
69 |
53 68
|
syl |
|
70 |
55 53
|
expcld |
|
71 |
|
faccl |
|
72 |
53 71
|
syl |
|
73 |
72
|
nncnd |
|
74 |
72
|
nnne0d |
|
75 |
70 73 74
|
divcld |
|
76 |
69 75
|
eqeltrd |
|
77 |
67 76
|
mulcld |
|
78 |
|
oveq2 |
|
79 |
|
fveq2 |
|
80 |
78 79
|
oveq12d |
|
81 |
|
oveq2 |
|
82 |
81
|
fveq2d |
|
83 |
80 82
|
oveq12d |
|
84 |
77 83
|
fsumrev2 |
|
85 |
2
|
eftval |
|
86 |
57 85
|
syl |
|
87 |
86
|
oveq2d |
|
88 |
72 64
|
nnmulcld |
|
89 |
88
|
nncnd |
|
90 |
88
|
nnne0d |
|
91 |
59 89 90
|
divrec2d |
|
92 |
54 73 58 65 74 66
|
divmuldivd |
|
93 |
|
bcval2 |
|
94 |
93
|
adantl |
|
95 |
94
|
oveq1d |
|
96 |
47
|
adantr |
|
97 |
61
|
adantr |
|
98 |
96 89 96 90 97
|
divdiv32d |
|
99 |
96 97
|
dividd |
|
100 |
99
|
oveq1d |
|
101 |
98 100
|
eqtrd |
|
102 |
95 101
|
eqtrd |
|
103 |
102
|
oveq1d |
|
104 |
91 92 103
|
3eqtr4rd |
|
105 |
87 104
|
eqtr4d |
|
106 |
|
nn0cn |
|
107 |
106
|
ad2antlr |
|
108 |
107
|
addid2d |
|
109 |
108
|
oveq1d |
|
110 |
109
|
oveq2d |
|
111 |
109
|
fveq2d |
|
112 |
110 111
|
oveq12d |
|
113 |
109
|
oveq2d |
|
114 |
|
nn0cn |
|
115 |
57 114
|
syl |
|
116 |
107 115
|
nncand |
|
117 |
113 116
|
eqtrd |
|
118 |
117
|
fveq2d |
|
119 |
112 118
|
oveq12d |
|
120 |
50 59 96 97
|
div23d |
|
121 |
105 119 120
|
3eqtr4rd |
|
122 |
121
|
sumeq2dv |
|
123 |
|
oveq2 |
|
124 |
123
|
oveq2d |
|
125 |
123
|
fveq2d |
|
126 |
124 125
|
oveq12d |
|
127 |
123
|
oveq2d |
|
128 |
127
|
fveq2d |
|
129 |
126 128
|
oveq12d |
|
130 |
129
|
cbvsumv |
|
131 |
122 130
|
eqtrdi |
|
132 |
84 131
|
eqtr4d |
|
133 |
62 132
|
eqtr4d |
|
134 |
43 133
|
eqtrd |
|
135 |
37 134
|
eqtrd |
|
136 |
4
|
abscld |
|
137 |
136
|
recnd |
|
138 |
26
|
efcllem |
|
139 |
137 138
|
syl |
|
140 |
2
|
efcllem |
|
141 |
5 140
|
syl |
|
142 |
10 29 31 33 35 135 139 141
|
mertens |
|
143 |
|
efval |
|
144 |
4 143
|
syl |
|
145 |
|
efval |
|
146 |
5 145
|
syl |
|
147 |
144 146
|
oveq12d |
|
148 |
142 147
|
breqtrrd |
|
149 |
|
climuni |
|
150 |
8 148 149
|
syl2anc |
|