Metamath Proof Explorer


Theorem efcan

Description: Cancellation law for exponential function. Equation 27 of Rudin p. 164. (Contributed by NM, 13-Jan-2006)

Ref Expression
Assertion efcan A e A e A = 1

Proof

Step Hyp Ref Expression
1 negcl A A
2 efadd A A e A + A = e A e A
3 1 2 mpdan A e A + A = e A e A
4 negid A A + A = 0
5 4 fveq2d A e A + A = e 0
6 ef0 e 0 = 1
7 5 6 eqtrdi A e A + A = 1
8 3 7 eqtr3d A e A e A = 1