Metamath Proof Explorer


Theorem efchtcl

Description: The Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion efchtcl A e θ A

Proof

Step Hyp Ref Expression
1 chtval A θ A = p 0 A log p
2 1 fveq2d A e θ A = e p 0 A log p
3 ppifi A 0 A Fin
4 simpr A p 0 A p 0 A
5 4 elin2d A p 0 A p
6 prmnn p p
7 5 6 syl A p 0 A p
8 7 nnrpd A p 0 A p +
9 8 relogcld A p 0 A log p
10 8 reeflogd A p 0 A e log p = p
11 10 7 eqeltrd A p 0 A e log p
12 3 9 11 efnnfsumcl A e p 0 A log p
13 2 12 eqeltrd A e θ A