Step |
Hyp |
Ref |
Expression |
1 |
|
cjcl |
|
2 |
|
eqid |
|
3 |
2
|
efcvg |
|
4 |
1 3
|
syl |
|
5 |
|
nn0uz |
|
6 |
|
eqid |
|
7 |
6
|
efcvg |
|
8 |
|
seqex |
|
9 |
8
|
a1i |
|
10 |
|
0zd |
|
11 |
6
|
eftval |
|
12 |
11
|
adantl |
|
13 |
|
eftcl |
|
14 |
12 13
|
eqeltrd |
|
15 |
5 10 14
|
serf |
|
16 |
15
|
ffvelrnda |
|
17 |
|
addcl |
|
18 |
17
|
adantl |
|
19 |
|
simpl |
|
20 |
|
elfznn0 |
|
21 |
19 20 14
|
syl2an |
|
22 |
|
simpr |
|
23 |
22 5
|
eleqtrdi |
|
24 |
|
cjadd |
|
25 |
24
|
adantl |
|
26 |
|
expcl |
|
27 |
|
faccl |
|
28 |
27
|
adantl |
|
29 |
28
|
nncnd |
|
30 |
28
|
nnne0d |
|
31 |
26 29 30
|
cjdivd |
|
32 |
|
cjexp |
|
33 |
28
|
nnred |
|
34 |
33
|
cjred |
|
35 |
32 34
|
oveq12d |
|
36 |
31 35
|
eqtrd |
|
37 |
12
|
fveq2d |
|
38 |
2
|
eftval |
|
39 |
38
|
adantl |
|
40 |
36 37 39
|
3eqtr4d |
|
41 |
19 20 40
|
syl2an |
|
42 |
18 21 23 25 41
|
seqhomo |
|
43 |
42
|
eqcomd |
|
44 |
5 7 9 10 16 43
|
climcj |
|
45 |
|
climuni |
|
46 |
4 44 45
|
syl2anc |
|