Metamath Proof Explorer


Theorem efcj

Description: The exponential of a complex conjugate. Equation 3 of Gleason p. 308. (Contributed by NM, 29-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion efcj A e A = e A

Proof

Step Hyp Ref Expression
1 cjcl A A
2 eqid n 0 A n n ! = n 0 A n n !
3 2 efcvg A seq 0 + n 0 A n n ! e A
4 1 3 syl A seq 0 + n 0 A n n ! e A
5 nn0uz 0 = 0
6 eqid n 0 A n n ! = n 0 A n n !
7 6 efcvg A seq 0 + n 0 A n n ! e A
8 seqex seq 0 + n 0 A n n ! V
9 8 a1i A seq 0 + n 0 A n n ! V
10 0zd A 0
11 6 eftval k 0 n 0 A n n ! k = A k k !
12 11 adantl A k 0 n 0 A n n ! k = A k k !
13 eftcl A k 0 A k k !
14 12 13 eqeltrd A k 0 n 0 A n n ! k
15 5 10 14 serf A seq 0 + n 0 A n n ! : 0
16 15 ffvelrnda A j 0 seq 0 + n 0 A n n ! j
17 addcl k m k + m
18 17 adantl A j 0 k m k + m
19 simpl A j 0 A
20 elfznn0 k 0 j k 0
21 19 20 14 syl2an A j 0 k 0 j n 0 A n n ! k
22 simpr A j 0 j 0
23 22 5 eleqtrdi A j 0 j 0
24 cjadd k m k + m = k + m
25 24 adantl A j 0 k m k + m = k + m
26 expcl A k 0 A k
27 faccl k 0 k !
28 27 adantl A k 0 k !
29 28 nncnd A k 0 k !
30 28 nnne0d A k 0 k ! 0
31 26 29 30 cjdivd A k 0 A k k ! = A k k !
32 cjexp A k 0 A k = A k
33 28 nnred A k 0 k !
34 33 cjred A k 0 k ! = k !
35 32 34 oveq12d A k 0 A k k ! = A k k !
36 31 35 eqtrd A k 0 A k k ! = A k k !
37 12 fveq2d A k 0 n 0 A n n ! k = A k k !
38 2 eftval k 0 n 0 A n n ! k = A k k !
39 38 adantl A k 0 n 0 A n n ! k = A k k !
40 36 37 39 3eqtr4d A k 0 n 0 A n n ! k = n 0 A n n ! k
41 19 20 40 syl2an A j 0 k 0 j n 0 A n n ! k = n 0 A n n ! k
42 18 21 23 25 41 seqhomo A j 0 seq 0 + n 0 A n n ! j = seq 0 + n 0 A n n ! j
43 42 eqcomd A j 0 seq 0 + n 0 A n n ! j = seq 0 + n 0 A n n ! j
44 5 7 9 10 16 43 climcj A seq 0 + n 0 A n n ! e A
45 climuni seq 0 + n 0 A n n ! e A seq 0 + n 0 A n n ! e A e A = e A
46 4 44 45 syl2anc A e A = e A