Metamath Proof Explorer


Theorem efcllem

Description: Lemma for efcl . The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat is used to show convergence. (Contributed by NM, 26-Apr-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Hypothesis eftval.1 F = n 0 A n n !
Assertion efcllem A seq 0 + F dom

Proof

Step Hyp Ref Expression
1 eftval.1 F = n 0 A n n !
2 nn0uz 0 = 0
3 eqid 2 A = 2 A
4 halfre 1 2
5 4 a1i A 1 2
6 halflt1 1 2 < 1
7 6 a1i A 1 2 < 1
8 2re 2
9 abscl A A
10 remulcl 2 A 2 A
11 8 9 10 sylancr A 2 A
12 8 a1i A 2
13 0le2 0 2
14 13 a1i A 0 2
15 absge0 A 0 A
16 12 9 14 15 mulge0d A 0 2 A
17 flge0nn0 2 A 0 2 A 2 A 0
18 11 16 17 syl2anc A 2 A 0
19 1 eftval k 0 F k = A k k !
20 19 adantl A k 0 F k = A k k !
21 eftcl A k 0 A k k !
22 20 21 eqeltrd A k 0 F k
23 9 adantr A k 2 A A
24 eluznn0 2 A 0 k 2 A k 0
25 18 24 sylan A k 2 A k 0
26 nn0p1nn k 0 k + 1
27 25 26 syl A k 2 A k + 1
28 23 27 nndivred A k 2 A A k + 1
29 4 a1i A k 2 A 1 2
30 23 25 reexpcld A k 2 A A k
31 25 faccld A k 2 A k !
32 30 31 nndivred A k 2 A A k k !
33 expcl A k 0 A k
34 25 33 syldan A k 2 A A k
35 34 absge0d A k 2 A 0 A k
36 absexp A k 0 A k = A k
37 25 36 syldan A k 2 A A k = A k
38 35 37 breqtrd A k 2 A 0 A k
39 31 nnred A k 2 A k !
40 31 nngt0d A k 2 A 0 < k !
41 divge0 A k 0 A k k ! 0 < k ! 0 A k k !
42 30 38 39 40 41 syl22anc A k 2 A 0 A k k !
43 11 adantr A k 2 A 2 A
44 peano2nn0 2 A 0 2 A + 1 0
45 18 44 syl A 2 A + 1 0
46 45 nn0red A 2 A + 1
47 46 adantr A k 2 A 2 A + 1
48 27 nnred A k 2 A k + 1
49 flltp1 2 A 2 A < 2 A + 1
50 43 49 syl A k 2 A 2 A < 2 A + 1
51 eluzp1p1 k 2 A k + 1 2 A + 1
52 51 adantl A k 2 A k + 1 2 A + 1
53 eluzle k + 1 2 A + 1 2 A + 1 k + 1
54 52 53 syl A k 2 A 2 A + 1 k + 1
55 43 47 48 50 54 ltletrd A k 2 A 2 A < k + 1
56 23 recnd A k 2 A A
57 2cn 2
58 mulcom A 2 A 2 = 2 A
59 56 57 58 sylancl A k 2 A A 2 = 2 A
60 27 nncnd A k 2 A k + 1
61 60 mulid2d A k 2 A 1 k + 1 = k + 1
62 55 59 61 3brtr4d A k 2 A A 2 < 1 k + 1
63 2rp 2 +
64 63 a1i A k 2 A 2 +
65 1red A k 2 A 1
66 27 nnrpd A k 2 A k + 1 +
67 23 64 65 66 lt2mul2divd A k 2 A A 2 < 1 k + 1 A k + 1 < 1 2
68 62 67 mpbid A k 2 A A k + 1 < 1 2
69 ltle A k + 1 1 2 A k + 1 < 1 2 A k + 1 1 2
70 28 4 69 sylancl A k 2 A A k + 1 < 1 2 A k + 1 1 2
71 68 70 mpd A k 2 A A k + 1 1 2
72 28 29 32 42 71 lemul2ad A k 2 A A k k ! A k + 1 A k k ! 1 2
73 peano2nn0 k 0 k + 1 0
74 25 73 syl A k 2 A k + 1 0
75 1 eftval k + 1 0 F k + 1 = A k + 1 k + 1 !
76 74 75 syl A k 2 A F k + 1 = A k + 1 k + 1 !
77 76 fveq2d A k 2 A F k + 1 = A k + 1 k + 1 !
78 absexp A k + 1 0 A k + 1 = A k + 1
79 74 78 syldan A k 2 A A k + 1 = A k + 1
80 56 25 expp1d A k 2 A A k + 1 = A k A
81 79 80 eqtrd A k 2 A A k + 1 = A k A
82 74 faccld A k 2 A k + 1 !
83 82 nnred A k 2 A k + 1 !
84 82 nnnn0d A k 2 A k + 1 ! 0
85 84 nn0ge0d A k 2 A 0 k + 1 !
86 83 85 absidd A k 2 A k + 1 ! = k + 1 !
87 facp1 k 0 k + 1 ! = k ! k + 1
88 25 87 syl A k 2 A k + 1 ! = k ! k + 1
89 86 88 eqtrd A k 2 A k + 1 ! = k ! k + 1
90 81 89 oveq12d A k 2 A A k + 1 k + 1 ! = A k A k ! k + 1
91 expcl A k + 1 0 A k + 1
92 74 91 syldan A k 2 A A k + 1
93 82 nncnd A k 2 A k + 1 !
94 82 nnne0d A k 2 A k + 1 ! 0
95 92 93 94 absdivd A k 2 A A k + 1 k + 1 ! = A k + 1 k + 1 !
96 30 recnd A k 2 A A k
97 31 nncnd A k 2 A k !
98 31 nnne0d A k 2 A k ! 0
99 27 nnne0d A k 2 A k + 1 0
100 96 97 56 60 98 99 divmuldivd A k 2 A A k k ! A k + 1 = A k A k ! k + 1
101 90 95 100 3eqtr4d A k 2 A A k + 1 k + 1 ! = A k k ! A k + 1
102 77 101 eqtrd A k 2 A F k + 1 = A k k ! A k + 1
103 halfcn 1 2
104 25 22 syldan A k 2 A F k
105 104 abscld A k 2 A F k
106 105 recnd A k 2 A F k
107 mulcom 1 2 F k 1 2 F k = F k 1 2
108 103 106 107 sylancr A k 2 A 1 2 F k = F k 1 2
109 25 19 syl A k 2 A F k = A k k !
110 109 fveq2d A k 2 A F k = A k k !
111 eftabs A k 0 A k k ! = A k k !
112 25 111 syldan A k 2 A A k k ! = A k k !
113 110 112 eqtrd A k 2 A F k = A k k !
114 113 oveq1d A k 2 A F k 1 2 = A k k ! 1 2
115 108 114 eqtrd A k 2 A 1 2 F k = A k k ! 1 2
116 72 102 115 3brtr4d A k 2 A F k + 1 1 2 F k
117 2 3 5 7 18 22 116 cvgrat A seq 0 + F dom