Step |
Hyp |
Ref |
Expression |
1 |
|
eftval.1 |
|
2 |
|
nn0uz |
|
3 |
|
eqid |
|
4 |
|
halfre |
|
5 |
4
|
a1i |
|
6 |
|
halflt1 |
|
7 |
6
|
a1i |
|
8 |
|
2re |
|
9 |
|
abscl |
|
10 |
|
remulcl |
|
11 |
8 9 10
|
sylancr |
|
12 |
8
|
a1i |
|
13 |
|
0le2 |
|
14 |
13
|
a1i |
|
15 |
|
absge0 |
|
16 |
12 9 14 15
|
mulge0d |
|
17 |
|
flge0nn0 |
|
18 |
11 16 17
|
syl2anc |
|
19 |
1
|
eftval |
|
20 |
19
|
adantl |
|
21 |
|
eftcl |
|
22 |
20 21
|
eqeltrd |
|
23 |
9
|
adantr |
|
24 |
|
eluznn0 |
|
25 |
18 24
|
sylan |
|
26 |
|
nn0p1nn |
|
27 |
25 26
|
syl |
|
28 |
23 27
|
nndivred |
|
29 |
4
|
a1i |
|
30 |
23 25
|
reexpcld |
|
31 |
25
|
faccld |
|
32 |
30 31
|
nndivred |
|
33 |
|
expcl |
|
34 |
25 33
|
syldan |
|
35 |
34
|
absge0d |
|
36 |
|
absexp |
|
37 |
25 36
|
syldan |
|
38 |
35 37
|
breqtrd |
|
39 |
31
|
nnred |
|
40 |
31
|
nngt0d |
|
41 |
|
divge0 |
|
42 |
30 38 39 40 41
|
syl22anc |
|
43 |
11
|
adantr |
|
44 |
|
peano2nn0 |
|
45 |
18 44
|
syl |
|
46 |
45
|
nn0red |
|
47 |
46
|
adantr |
|
48 |
27
|
nnred |
|
49 |
|
flltp1 |
|
50 |
43 49
|
syl |
|
51 |
|
eluzp1p1 |
|
52 |
51
|
adantl |
|
53 |
|
eluzle |
|
54 |
52 53
|
syl |
|
55 |
43 47 48 50 54
|
ltletrd |
|
56 |
23
|
recnd |
|
57 |
|
2cn |
|
58 |
|
mulcom |
|
59 |
56 57 58
|
sylancl |
|
60 |
27
|
nncnd |
|
61 |
60
|
mulid2d |
|
62 |
55 59 61
|
3brtr4d |
|
63 |
|
2rp |
|
64 |
63
|
a1i |
|
65 |
|
1red |
|
66 |
27
|
nnrpd |
|
67 |
23 64 65 66
|
lt2mul2divd |
|
68 |
62 67
|
mpbid |
|
69 |
|
ltle |
|
70 |
28 4 69
|
sylancl |
|
71 |
68 70
|
mpd |
|
72 |
28 29 32 42 71
|
lemul2ad |
|
73 |
|
peano2nn0 |
|
74 |
25 73
|
syl |
|
75 |
1
|
eftval |
|
76 |
74 75
|
syl |
|
77 |
76
|
fveq2d |
|
78 |
|
absexp |
|
79 |
74 78
|
syldan |
|
80 |
56 25
|
expp1d |
|
81 |
79 80
|
eqtrd |
|
82 |
74
|
faccld |
|
83 |
82
|
nnred |
|
84 |
82
|
nnnn0d |
|
85 |
84
|
nn0ge0d |
|
86 |
83 85
|
absidd |
|
87 |
|
facp1 |
|
88 |
25 87
|
syl |
|
89 |
86 88
|
eqtrd |
|
90 |
81 89
|
oveq12d |
|
91 |
|
expcl |
|
92 |
74 91
|
syldan |
|
93 |
82
|
nncnd |
|
94 |
82
|
nnne0d |
|
95 |
92 93 94
|
absdivd |
|
96 |
30
|
recnd |
|
97 |
31
|
nncnd |
|
98 |
31
|
nnne0d |
|
99 |
27
|
nnne0d |
|
100 |
96 97 56 60 98 99
|
divmuldivd |
|
101 |
90 95 100
|
3eqtr4d |
|
102 |
77 101
|
eqtrd |
|
103 |
|
halfcn |
|
104 |
25 22
|
syldan |
|
105 |
104
|
abscld |
|
106 |
105
|
recnd |
|
107 |
|
mulcom |
|
108 |
103 106 107
|
sylancr |
|
109 |
25 19
|
syl |
|
110 |
109
|
fveq2d |
|
111 |
|
eftabs |
|
112 |
25 111
|
syldan |
|
113 |
110 112
|
eqtrd |
|
114 |
113
|
oveq1d |
|
115 |
108 114
|
eqtrd |
|
116 |
72 102 115
|
3brtr4d |
|
117 |
2 3 5 7 18 22 116
|
cvgrat |
|