Metamath Proof Explorer


Theorem efcn

Description: The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion efcn exp : cn

Proof

Step Hyp Ref Expression
1 ssid
2 eff exp :
3 dvef D exp = exp
4 3 feq1i exp : exp :
5 2 4 mpbir exp :
6 5 fdmi dom exp =
7 dvcn exp : dom exp = exp : cn
8 6 7 mpan2 exp : exp : cn
9 1 2 1 8 mp3an exp : cn