Metamath Proof Explorer


Theorem efcvg

Description: The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis efcvg.1 F = n 0 A n n !
Assertion efcvg A seq 0 + F e A

Proof

Step Hyp Ref Expression
1 efcvg.1 F = n 0 A n n !
2 nn0uz 0 = 0
3 0zd A 0
4 1 eftval k 0 F k = A k k !
5 4 adantl A k 0 F k = A k k !
6 eftcl A k 0 A k k !
7 1 efcllem A seq 0 + F dom
8 2 3 5 6 7 isumclim2 A seq 0 + F k 0 A k k !
9 efval A e A = k 0 A k k !
10 8 9 breqtrrd A seq 0 + F e A