Step |
Hyp |
Ref |
Expression |
1 |
|
efcvgfsum.1 |
|
2 |
|
oveq2 |
|
3 |
2
|
sumeq1d |
|
4 |
|
sumex |
|
5 |
3 1 4
|
fvmpt |
|
6 |
5
|
adantl |
|
7 |
|
elfznn0 |
|
8 |
7
|
adantl |
|
9 |
|
eqid |
|
10 |
9
|
eftval |
|
11 |
8 10
|
syl |
|
12 |
|
simpr |
|
13 |
|
nn0uz |
|
14 |
12 13
|
eleqtrdi |
|
15 |
|
simpll |
|
16 |
|
eftcl |
|
17 |
15 8 16
|
syl2anc |
|
18 |
11 14 17
|
fsumser |
|
19 |
6 18
|
eqtrd |
|
20 |
19
|
ralrimiva |
|
21 |
|
sumex |
|
22 |
21 1
|
fnmpti |
|
23 |
|
0z |
|
24 |
|
seqfn |
|
25 |
23 24
|
ax-mp |
|
26 |
13
|
fneq2i |
|
27 |
25 26
|
mpbir |
|
28 |
|
eqfnfv |
|
29 |
22 27 28
|
mp2an |
|
30 |
20 29
|
sylibr |
|
31 |
9
|
efcvg |
|
32 |
30 31
|
eqbrtrd |
|