| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efcvgfsum.1 |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
sumeq1d |
|
| 4 |
|
sumex |
|
| 5 |
3 1 4
|
fvmpt |
|
| 6 |
5
|
adantl |
|
| 7 |
|
elfznn0 |
|
| 8 |
7
|
adantl |
|
| 9 |
|
eqid |
|
| 10 |
9
|
eftval |
|
| 11 |
8 10
|
syl |
|
| 12 |
|
simpr |
|
| 13 |
|
nn0uz |
|
| 14 |
12 13
|
eleqtrdi |
|
| 15 |
|
simpll |
|
| 16 |
|
eftcl |
|
| 17 |
15 8 16
|
syl2anc |
|
| 18 |
11 14 17
|
fsumser |
|
| 19 |
6 18
|
eqtrd |
|
| 20 |
19
|
ralrimiva |
|
| 21 |
|
sumex |
|
| 22 |
21 1
|
fnmpti |
|
| 23 |
|
0z |
|
| 24 |
|
seqfn |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
13
|
fneq2i |
|
| 27 |
25 26
|
mpbir |
|
| 28 |
|
eqfnfv |
|
| 29 |
22 27 28
|
mp2an |
|
| 30 |
20 29
|
sylibr |
|
| 31 |
9
|
efcvg |
|
| 32 |
30 31
|
eqbrtrd |
|