Metamath Proof Explorer


Theorem efeq1

Description: A complex number whose exponential is one is an integer multiple of 2pi i . (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efeq1 A e A = 1 A i 2 π

Proof

Step Hyp Ref Expression
1 halfcl A A 2
2 ax-icn i
3 ine0 i 0
4 divcl A 2 i i 0 A 2 i
5 2 3 4 mp3an23 A 2 A 2 i
6 1 5 syl A A 2 i
7 sineq0 A 2 i sin A 2 i = 0 A 2 i π
8 6 7 syl A sin A 2 i = 0 A 2 i π
9 sinval A 2 i sin A 2 i = e i A 2 i e i A 2 i 2 i
10 6 9 syl A sin A 2 i = e i A 2 i e i A 2 i 2 i
11 divcan2 A 2 i i 0 i A 2 i = A 2
12 2 3 11 mp3an23 A 2 i A 2 i = A 2
13 1 12 syl A i A 2 i = A 2
14 13 fveq2d A e i A 2 i = e A 2
15 mulneg1 i A 2 i i A 2 i = i A 2 i
16 2 6 15 sylancr A i A 2 i = i A 2 i
17 13 negeqd A i A 2 i = A 2
18 16 17 eqtrd A i A 2 i = A 2
19 18 fveq2d A e i A 2 i = e A 2
20 14 19 oveq12d A e i A 2 i e i A 2 i = e A 2 e A 2
21 20 oveq1d A e i A 2 i e i A 2 i 2 i = e A 2 e A 2 2 i
22 10 21 eqtrd A sin A 2 i = e A 2 e A 2 2 i
23 22 eqeq1d A sin A 2 i = 0 e A 2 e A 2 2 i = 0
24 efcl A 2 e A 2
25 1 24 syl A e A 2
26 1 negcld A A 2
27 efcl A 2 e A 2
28 26 27 syl A e A 2
29 25 28 subcld A e A 2 e A 2
30 2cn 2
31 30 2 mulcli 2 i
32 2ne0 2 0
33 30 2 32 3 mulne0i 2 i 0
34 diveq0 e A 2 e A 2 2 i 2 i 0 e A 2 e A 2 2 i = 0 e A 2 e A 2 = 0
35 31 33 34 mp3an23 e A 2 e A 2 e A 2 e A 2 2 i = 0 e A 2 e A 2 = 0
36 29 35 syl A e A 2 e A 2 2 i = 0 e A 2 e A 2 = 0
37 efne0 A 2 e A 2 0
38 26 37 syl A e A 2 0
39 25 28 28 38 divsubdird A e A 2 e A 2 e A 2 = e A 2 e A 2 e A 2 e A 2
40 efsub A 2 A 2 e A 2 A 2 = e A 2 e A 2
41 1 26 40 syl2anc A e A 2 A 2 = e A 2 e A 2
42 1 1 subnegd A A 2 A 2 = A 2 + A 2
43 2halves A A 2 + A 2 = A
44 42 43 eqtrd A A 2 A 2 = A
45 44 fveq2d A e A 2 A 2 = e A
46 41 45 eqtr3d A e A 2 e A 2 = e A
47 28 38 dividd A e A 2 e A 2 = 1
48 46 47 oveq12d A e A 2 e A 2 e A 2 e A 2 = e A 1
49 39 48 eqtrd A e A 2 e A 2 e A 2 = e A 1
50 49 eqeq1d A e A 2 e A 2 e A 2 = 0 e A 1 = 0
51 29 28 38 diveq0ad A e A 2 e A 2 e A 2 = 0 e A 2 e A 2 = 0
52 efcl A e A
53 ax-1cn 1
54 subeq0 e A 1 e A 1 = 0 e A = 1
55 52 53 54 sylancl A e A 1 = 0 e A = 1
56 50 51 55 3bitr3d A e A 2 e A 2 = 0 e A = 1
57 23 36 56 3bitrd A sin A 2 i = 0 e A = 1
58 2cnne0 2 2 0
59 2 3 pm3.2i i i 0
60 divdiv32 A 2 2 0 i i 0 A 2 i = A i 2
61 58 59 60 mp3an23 A A 2 i = A i 2
62 61 oveq1d A A 2 i π = A i 2 π
63 divcl A i i 0 A i
64 2 3 63 mp3an23 A A i
65 picn π
66 pire π
67 pipos 0 < π
68 66 67 gt0ne0ii π 0
69 65 68 pm3.2i π π 0
70 divdiv1 A i 2 2 0 π π 0 A i 2 π = A i 2 π
71 58 69 70 mp3an23 A i A i 2 π = A i 2 π
72 64 71 syl A A i 2 π = A i 2 π
73 30 65 mulcli 2 π
74 30 65 32 68 mulne0i 2 π 0
75 73 74 pm3.2i 2 π 2 π 0
76 divdiv1 A i i 0 2 π 2 π 0 A i 2 π = A i 2 π
77 59 75 76 mp3an23 A A i 2 π = A i 2 π
78 72 77 eqtrd A A i 2 π = A i 2 π
79 62 78 eqtrd A A 2 i π = A i 2 π
80 79 eleq1d A A 2 i π A i 2 π
81 8 57 80 3bitr3d A e A = 1 A i 2 π