Metamath Proof Explorer


Theorem efeul

Description: Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006)

Ref Expression
Assertion efeul A e A = e A cos A + i sin A

Proof

Step Hyp Ref Expression
1 replim A A = A + i A
2 1 fveq2d A e A = e A + i A
3 recl A A
4 3 recnd A A
5 ax-icn i
6 imcl A A
7 6 recnd A A
8 mulcl i A i A
9 5 7 8 sylancr A i A
10 efadd A i A e A + i A = e A e i A
11 4 9 10 syl2anc A e A + i A = e A e i A
12 efival A e i A = cos A + i sin A
13 7 12 syl A e i A = cos A + i sin A
14 13 oveq2d A e A e i A = e A cos A + i sin A
15 2 11 14 3eqtrd A e A = e A cos A + i sin A