Metamath Proof Explorer


Theorem efexp

Description: The exponential of an integer power. Corollary 15-4.4 of Gleason p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion efexp A N e N A = e A N

Proof

Step Hyp Ref Expression
1 zcn N N
2 mulcom A N A N = N A
3 1 2 sylan2 A N A N = N A
4 3 fveq2d A N e A N = e N A
5 oveq2 j = 0 A j = A 0
6 5 fveq2d j = 0 e A j = e A 0
7 oveq2 j = 0 e A j = e A 0
8 6 7 eqeq12d j = 0 e A j = e A j e A 0 = e A 0
9 oveq2 j = k A j = A k
10 9 fveq2d j = k e A j = e A k
11 oveq2 j = k e A j = e A k
12 10 11 eqeq12d j = k e A j = e A j e A k = e A k
13 oveq2 j = k + 1 A j = A k + 1
14 13 fveq2d j = k + 1 e A j = e A k + 1
15 oveq2 j = k + 1 e A j = e A k + 1
16 14 15 eqeq12d j = k + 1 e A j = e A j e A k + 1 = e A k + 1
17 oveq2 j = k A j = A k
18 17 fveq2d j = k e A j = e A k
19 oveq2 j = k e A j = e A k
20 18 19 eqeq12d j = k e A j = e A j e A k = e A k
21 oveq2 j = N A j = A N
22 21 fveq2d j = N e A j = e A N
23 oveq2 j = N e A j = e A N
24 22 23 eqeq12d j = N e A j = e A j e A N = e A N
25 ef0 e 0 = 1
26 mul01 A A 0 = 0
27 26 fveq2d A e A 0 = e 0
28 efcl A e A
29 28 exp0d A e A 0 = 1
30 25 27 29 3eqtr4a A e A 0 = e A 0
31 oveq1 e A k = e A k e A k e A = e A k e A
32 31 adantl A k 0 e A k = e A k e A k e A = e A k e A
33 nn0cn k 0 k
34 ax-1cn 1
35 adddi A k 1 A k + 1 = A k + A 1
36 34 35 mp3an3 A k A k + 1 = A k + A 1
37 mulid1 A A 1 = A
38 37 adantr A k A 1 = A
39 38 oveq2d A k A k + A 1 = A k + A
40 36 39 eqtrd A k A k + 1 = A k + A
41 33 40 sylan2 A k 0 A k + 1 = A k + A
42 41 fveq2d A k 0 e A k + 1 = e A k + A
43 mulcl A k A k
44 33 43 sylan2 A k 0 A k
45 simpl A k 0 A
46 efadd A k A e A k + A = e A k e A
47 44 45 46 syl2anc A k 0 e A k + A = e A k e A
48 42 47 eqtrd A k 0 e A k + 1 = e A k e A
49 48 adantr A k 0 e A k = e A k e A k + 1 = e A k e A
50 expp1 e A k 0 e A k + 1 = e A k e A
51 28 50 sylan A k 0 e A k + 1 = e A k e A
52 51 adantr A k 0 e A k = e A k e A k + 1 = e A k e A
53 32 49 52 3eqtr4d A k 0 e A k = e A k e A k + 1 = e A k + 1
54 53 exp31 A k 0 e A k = e A k e A k + 1 = e A k + 1
55 oveq2 e A k = e A k 1 e A k = 1 e A k
56 nncn k k
57 mulneg2 A k A k = A k
58 56 57 sylan2 A k A k = A k
59 58 fveq2d A k e A k = e A k
60 56 43 sylan2 A k A k
61 efneg A k e A k = 1 e A k
62 60 61 syl A k e A k = 1 e A k
63 59 62 eqtrd A k e A k = 1 e A k
64 nnnn0 k k 0
65 expneg e A k 0 e A k = 1 e A k
66 28 64 65 syl2an A k e A k = 1 e A k
67 63 66 eqeq12d A k e A k = e A k 1 e A k = 1 e A k
68 55 67 syl5ibr A k e A k = e A k e A k = e A k
69 68 ex A k e A k = e A k e A k = e A k
70 8 12 16 20 24 30 54 69 zindd A N e A N = e A N
71 70 imp A N e A N = e A N
72 4 71 eqtr3d A N e N A = e A N