Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|
2 |
|
mulcom |
|
3 |
1 2
|
sylan2 |
|
4 |
3
|
fveq2d |
|
5 |
|
oveq2 |
|
6 |
5
|
fveq2d |
|
7 |
|
oveq2 |
|
8 |
6 7
|
eqeq12d |
|
9 |
|
oveq2 |
|
10 |
9
|
fveq2d |
|
11 |
|
oveq2 |
|
12 |
10 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq2d |
|
15 |
|
oveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
|
oveq2 |
|
18 |
17
|
fveq2d |
|
19 |
|
oveq2 |
|
20 |
18 19
|
eqeq12d |
|
21 |
|
oveq2 |
|
22 |
21
|
fveq2d |
|
23 |
|
oveq2 |
|
24 |
22 23
|
eqeq12d |
|
25 |
|
ef0 |
|
26 |
|
mul01 |
|
27 |
26
|
fveq2d |
|
28 |
|
efcl |
|
29 |
28
|
exp0d |
|
30 |
25 27 29
|
3eqtr4a |
|
31 |
|
oveq1 |
|
32 |
31
|
adantl |
|
33 |
|
nn0cn |
|
34 |
|
ax-1cn |
|
35 |
|
adddi |
|
36 |
34 35
|
mp3an3 |
|
37 |
|
mulid1 |
|
38 |
37
|
adantr |
|
39 |
38
|
oveq2d |
|
40 |
36 39
|
eqtrd |
|
41 |
33 40
|
sylan2 |
|
42 |
41
|
fveq2d |
|
43 |
|
mulcl |
|
44 |
33 43
|
sylan2 |
|
45 |
|
simpl |
|
46 |
|
efadd |
|
47 |
44 45 46
|
syl2anc |
|
48 |
42 47
|
eqtrd |
|
49 |
48
|
adantr |
|
50 |
|
expp1 |
|
51 |
28 50
|
sylan |
|
52 |
51
|
adantr |
|
53 |
32 49 52
|
3eqtr4d |
|
54 |
53
|
exp31 |
|
55 |
|
oveq2 |
|
56 |
|
nncn |
|
57 |
|
mulneg2 |
|
58 |
56 57
|
sylan2 |
|
59 |
58
|
fveq2d |
|
60 |
56 43
|
sylan2 |
|
61 |
|
efneg |
|
62 |
60 61
|
syl |
|
63 |
59 62
|
eqtrd |
|
64 |
|
nnnn0 |
|
65 |
|
expneg |
|
66 |
28 64 65
|
syl2an |
|
67 |
63 66
|
eqeq12d |
|
68 |
55 67
|
syl5ibr |
|
69 |
68
|
ex |
|
70 |
8 12 16 20 24 30 54 69
|
zindd |
|
71 |
70
|
imp |
|
72 |
4 71
|
eqtr3d |
|