| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|
| 2 |
|
mulcom |
|
| 3 |
1 2
|
sylan2 |
|
| 4 |
3
|
fveq2d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
oveq2 |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
oveq2 |
|
| 20 |
18 19
|
eqeq12d |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
oveq2 |
|
| 24 |
22 23
|
eqeq12d |
|
| 25 |
|
ef0 |
|
| 26 |
|
mul01 |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
efcl |
|
| 29 |
28
|
exp0d |
|
| 30 |
25 27 29
|
3eqtr4a |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
adantl |
|
| 33 |
|
nn0cn |
|
| 34 |
|
ax-1cn |
|
| 35 |
|
adddi |
|
| 36 |
34 35
|
mp3an3 |
|
| 37 |
|
mulrid |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
oveq2d |
|
| 40 |
36 39
|
eqtrd |
|
| 41 |
33 40
|
sylan2 |
|
| 42 |
41
|
fveq2d |
|
| 43 |
|
mulcl |
|
| 44 |
33 43
|
sylan2 |
|
| 45 |
|
simpl |
|
| 46 |
|
efadd |
|
| 47 |
44 45 46
|
syl2anc |
|
| 48 |
42 47
|
eqtrd |
|
| 49 |
48
|
adantr |
|
| 50 |
|
expp1 |
|
| 51 |
28 50
|
sylan |
|
| 52 |
51
|
adantr |
|
| 53 |
32 49 52
|
3eqtr4d |
|
| 54 |
53
|
exp31 |
|
| 55 |
|
oveq2 |
|
| 56 |
|
nncn |
|
| 57 |
|
mulneg2 |
|
| 58 |
56 57
|
sylan2 |
|
| 59 |
58
|
fveq2d |
|
| 60 |
56 43
|
sylan2 |
|
| 61 |
|
efneg |
|
| 62 |
60 61
|
syl |
|
| 63 |
59 62
|
eqtrd |
|
| 64 |
|
nnnn0 |
|
| 65 |
|
expneg |
|
| 66 |
28 64 65
|
syl2an |
|
| 67 |
63 66
|
eqeq12d |
|
| 68 |
55 67
|
imbitrrid |
|
| 69 |
68
|
ex |
|
| 70 |
8 12 16 20 24 30 54 69
|
zindd |
|
| 71 |
70
|
imp |
|
| 72 |
4 71
|
eqtr3d |
|